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ABSTIACT

Various mathematical expressions that may be used to repre-
sent experimental data are presented. Specific methods of linear
transforn-ition and the general least-squarta procedure for
"unctions having nonlinear parameters are described in detail.
In addition, brief discussions are given for the following classes
of functions: linear combinations of exponentials, asymptotic
regression, frequency functions, ani polynomials. References
are provided that describe the methodology in greater detail.
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I. INTRODUCTION

In the analysis of experimental data, it is often desirable tc obtain

a mathematical expression of the relatiouship between two variabli:s. The

determination of an empirical forrmula, whose curve will be an appropriate

fit for the plotted data, depends upon an understanding oA. the physical

significance of the data and a knowledge of the general nature of a wide

variety of curves. Once the equation of a curve has been selected for a

set of data, rhe constants of the equation must be determined by one Of

the methods available for fitting a curve to experimental data.

The objective of this paper is to present in as concise a form as pos-

sible m~thvds'for handling a wide variety of functions. The methods dis-

cussed here represent the suthor's investigation into various techniques

of curve fitting. Although the investigation has by no means been exhaus-

tive, it is hoped that this :ol•.ction will serve at least to hasten the

work of others who wish to apply the methods of curve fitting, by providing

them with a summary of the available straightforward methods, sad by

directing them to some of the literature available on the treatment of

more complex curves. In the interest of keeping the paper brief and easy

to follow, proofs and numerical examples of the methuds discussed have

been omýtted. It is recoieided that the reader refer directly to the

literature for further details on the method he finally decides to employ.



11. STRAIGHT -LINE TRANSFORMATIONS

A. INIRODUCTION

If the experimental data, when plotted on arithmetic coordinate paper,
do not approximate a straight line y a a + bx but do seem to ap~roximte a
smiooth curve, the shape of the curve and an understanding of the nature of
the experiment may suggest the equation of the curve that will fit the
points most closely. A very helpful way of verifying the appropriateness
of a particular equation for a set of data is to transform the data in such
a way that a straight-line plot y' a a' + bx' is obtaiced. If a straight
line is achieved through some transformation, the equation corresponding to
the trans~formation will be known to be satisfactory and, furthermore, the
parameters of the equation can be evaluated directly from the linear form
of the equation.

Table I is furnished as a quick reference to the methods of straight-
line transformation available for fitting curves to experimental data. A
collection of graphs (Figure 1) is included to illustrate tha effect of
variation of the paravueters (cinstants) in the equations presented in the
table. The general techniques of linear transformation displayed in the
table are Outlined in Section 11. For numearical examples and more detailed
explanations of the methods of transformation, the reader is directed to
the Literature Cited.'-* Joý-.rov- I treat. the widest variety of general
types of equations, and his W~ok wmild be recommended as a first reference.
The other bouka treat much of the "me material as Johnson does, but Davis'
and Running3 present, in addition, a few of the more specialised procedures
that are given in Table 1.

3. GMI4EAL PR(UEOU5S FOR L1NUAR TRAMS1OSJVTION

1. Reciprocals or Logarithms (Equat ions (1), (2), .3), (4), and (5) of
Table 11

Log~arithas or reciprocals of one or both of the variablee may be
taken before the values are plotted ont arithmtic coordinate paper. Alter-
natively, logarithmic or reciprocal paper my be used to eliminate the road
for mektag these additional calculations.

2. Selection Of a ]Point Ons the Zxperimenhtal CurVe (Equations (Ua), (6),
and (7) o! Table 1]

A particular point (%I, y1) on the experimental cur"e my be used
to reduce the original aqu~ation to a linear form in two parameters. occa-
sionally, more then one point is used in this way.

3. Combination of Methods (1) and (2) (Equations (4a), (4mb), (So), (Sb),
and (6a) of Table 1)



4. Combination of Two Simple Curves

(a) Sum of two simple equations, each of which influences a parti-
cular portion of the curve (Methot 14 of Table I).

When a portion of the data appears to be linear on some type of
coordinate paper, wnereas the remainder snows a distinct curvature, the
linear portion may be fitted tv the appropriate formula, awi then the
deviations of the rest of the data from this straight line my be fitted by
a second function. The final equation will be the sum of the two functions,
each function being negligible for the portion of the curve where the other

function has the most influence.

(b) Sum of trw simple equations, both of which exert influence over
the entire range of the cuive [Equations (10), (11), and (12) of Table 11.

Although no porton of the plotted cui-e i" linear on any of the
types of coordinate paper, some curves my be represented by a sum of
simple equations. In this ceser, ratios of the successive values of y art
plotted on arithmetic coordinate paper to obtain a 'straigt line th-t will
give the values of two of the parameters. The remaining two parametert
can then be evaluated from the original equation.

(c) Two separate equations, each valid for a restricted range of
"he variables.

When it is timossible to represent a sxt of data by an equation
iwvnlving few constants, it ts sometimes advisable to fit different
equations to distinct portions of the curve.'

C. DMIK3XZATION OF THE COMMTHT

Orce the equation has been seleccid, there are several ways in which
the parameters of the curve my be apFtoulasted, aepending on the degree
of accuracy required. Reference will be made later in the paper to the
principle of maximum likelihood a&.d the method of ents, which are usefol
Io the estivation 01 parameters for certain types of functions. Trh three

most c€ -Oi methods Af parameter estimation, given In the ocder of the
accuracy afforded, ore the method of least squares, the method of averages,
and the method of selected points. Since these three methods are fully
described in standard textbooks, there ts no need to give a detailed ex-
planation %f them here. The method of least squares gives the bext fit
and is generally relied upon for accurate estimates of the paramters.
hadern-day co€puting facilities relieve the problem once imqosed by the
leabrious comutations -equired in the leait-squares process. A modiftca-
ti., of the ltho, of averages has been reported by Mait and Shrivastava'.
Their method of group averages can be employed to give groeter precision
then would be furnished by the method of averages with lpss arithmetic

labor than would be required by the method of least squares.

SII il !~ rl il el II nI
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Equation (i)

-y a + bx 10

A. .1 + .3xy
A

B. --.. +.3xy 4

-. .5 + .3x

y x

Equation (2)
b 10

x

A. y - .1+ D

3 4S. y- 2+ ,4

C. y-4+ .3 
2

D y 6+ 22 4 6 S 10x x

Equation (V)
a+ bx10y

y 4i~ +3 A

c. l. a .4 +.3x2
yD

D. + .3x

ligure 1. Graphs of EquatLons (1) through (6), (14b).



Equation (4)

y12 7b 1

A. y, -4x*5  10

y 6

c. y - 4x-' 3

4

D. y x 52 c

x
FqUation (5)

y *abxG

A. y * 2(. 2)'

2.2
B. y * 2 (.])' 2._ __ __ _

1.8
. y ,,,- 9 n) y 1.6

1.4

I. y (1.02) 1

P. y 20.04), 0"
0.4-

0.2,
y. . 20(.3)' A

2.8
2.2

A. y .14 +.010
2  2.m

1.8 5•Y . - (.)" y 16.z4 \ •

C. y OSX .005m
2  1.4

1.2

0. .2h Z~.0051t I I '

0.1
F. - .OSR + .0s ,2  0.4

Figure 1. Co.ltipu.d.



14

2 Equation (6a)

1a + bx+ cx 2  1.8

2 y 
1.6A

. I -. Ix + .012 1.4. A

B. * 1 + .lx + .Olx2 y 1.2 
=_._=

y 1 EC. = 1 - .05x + .00-5X2 0.B.8
C.Y 0.6

D. 1= I + .05x + .O05x 2  0.8

y

. 1 a 1 + .05x - .005x2 0.2

y 0, -T 60
x

Equation (6b) z

2.64

2.2
y2 .a4,bx 4-cx 2  2---

1.6 ..
A. y- - 1 - .Ix + .Olx2 1.6,

I. y2a 1 + Ix + .olx2 y 1.4,
1,

C. Y2 - 14+ .05X + .005x
2  L

0.8
b. y2 , I + .0)5x - .O05x 2  0.6

0.2

0 4 6 t G

3 7'~aat~ 1e 6c)
x

3
y a a C . 2.6

24 2.6

ya. y
2 -; 2.2,

a.?..~ 4 1.6 A
y 1.6

y 4.,
c.. y.-,l~ 1 .6

9. 4- .i. 4 0.1,4

A.

Flsulr* 1. Continued.
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Equation (6d)

x

)A. y . 2 8

.'=.2 - .lx +0x6

B. y = .3 - .2x + .htz 4
K C

.+lx I-.2XC. y~ = .2 +- .lx I- .05x2  2 .

x 2 4 6
D. y .3 + .2x + .lx

Equation (6e)

y loa + bx + cx 2  61A

A. y . 10.75 30x .03x 2

B. y - 10" 375 .15x + .015x 2  y

C. y . 1 0 ,25 - .1Ox + .OX 2  3 -B

D. y 10' .25 + .lox -. Ox 2  2 C

E. y 10 .375 + .lSx - .015x 2  I .,D

v. y 10 " 75 + .30X - .03x 2  0 E -

0 2 4 6 8 10
x

Equation (6f)

3A/
2.8
2.6
2.4•

y a a + b lolt x + c lOS2 x 2.2
2

A. y a 1.2 + log K + 1.2 log
2 x s

5. y . 1,2 + lot x + .12 1062 x 1.6
1.4

C. y . 1,2 - lot x + 1.2 l1o 1.2
2

D. y a 1.2 - lot X + .12 Iog2 v

0.6
0.4
0.2 ,, i I , I i

0 2 4 6 a 10

7.ur. 1i. Continued.
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Equation (6g)

31
2.8

2.:4 A

2.2

Y 1 0 a + b 1o8 x + c log
2 x 2

1.8

A. y . 10.50 - 2 log x + 2 log
2 x Y 1.6

B. y - 10.25 - log x+ :og2 x 1.4

B. ylO1.2

C. y" 10 .25÷+ logx" lo02 x I

D5y0~ + 2log x- 21092 1 0.8 C0.6

0.4 D
0.2

0 2 4 6 I L

y a + bx + CX d Equation (14b)

A. y + x+6x
3  10

A. y, + x + 6" 3  
S.A

C. y + + x+ x 3

D. y 1+X 2x_
3

t. y"a I+ x 4x" 2 
3  2C

y. a I + x 6 ' " 2

9 x

y +b d quation (b) A/

A. I + it+ .Ol# a

3. y.,, U* .0001%4

D. y-t - .000144 t6

c.cF. y. co*ntin .0002I A

IPy.!÷•. ,1w. 0Ctu& 2

a

?tgure 1. Continued.
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The method of selected points, though least accurate, is very simple

and can be used to get an jimuediate rough idea of the nature of the para-
meters. In employing this method, the straight line is usually fitted
manually to the plotted points. The arbitrary eye fit is the main factor
contributing to the inaccuracy of this .,,ethod of estimating the parameters.
Askovitz' has described a very interesting method of fitting a least-
squares straight line to a series of points by a method that is entirely
graphical. Since this method is not "well known and can consilerably improve
the accuracy of the method of selected points (provided only that the
x values of the points are equally spaced), it will be described briefly
in the next section. For proof of the method, the reader should refer to
the original work.

D. SHORT-CUT GRAPHIC METHOD FOR FITTING THE BEST STRAIGHT LINE TO A SERIES
OF POINTS ACCORDING TO THE CRITERION OF LEAST SQUARES*

Given: Five points--A, B, C, D, E, (or any number of points), with
values of x at equal intervals 6 x. Consider the value of A x to be a
spacing unit.

Method:

(a) Place straightedge so that it joins A and B (Figure 2). Draw
a straight line from A to a point 2/3 of a spacing unit farther. The point
found is 1'. Note thae B' lies on a vertical line 2/3 A x to the right
of A.

(b) Place straightedge so that it joins S' to C. Starting at W',
draw a straight line 2/3 of a spacing unit farther. The point found is
C', and lies on a vertical line 2/3 "' x to the ritht of B'.

(c) Continue in this manner. Call the le?,t point found T.

(d) Now start at E and go backwards in the sem manner. Call the
last point found U.

(e) UT is the line of best fit by least siuares for the points
A to E.

(f) As a check on the procedure, z values of A, U, T, end I should
be found to be equally spaced.

* "Advancing Centroids Technique" (condensed from a paper by Aekovitz').
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A D

-2 E
2C

spacing unit (/c x)

0 x

Figure 2. Graphic Method of fitting Straight Tine.

Z. EXPI4ANTION OF TALIE I

For each of the equations stated in the first colum of Table 1, the
second colum gives the coordinates that will yield a straight line on
arithumtic coordinate paper heun the equation is appropriate for the given
data. Column 3 gives the corresponding linear equation from which the
paramters of the function my be determined. One refer-r ce for each
method is cited in the last columm.

The most commne methods of linear transformition ar*. described in items
(1) through (3) of Table 1. Familiarity with these teciniques will assist
the reader in understanding the later entries In the ta.il. Ite** (6)
describes a method for trensforming a parabola to linear form. A number of
variations of the besic equation for a parabola are givtn in item (6a)
through (6g). Once these variations have been reduced %o the basic parabola
equation by one of the transforstioos outlined in items (1) through (3),
they my be handled by the general mthod for a parabola as explained in
item (6).

Determination of the paramters In Rquations (5) tbrough (13) requires
the 4se of two linear equations. The first linear equation yields esttmates
of two of the perameters, which are used subsequently in the second equation
to find the reminder of the parameters. The atchod presented is item (14)
of the table is appropriate -tly when a portion of the plotted data is
linear either iindistely or after som transformation hes been performed.
it should be noted that Rquations (1), (10), and (12) my be handled by
more general athbods when the special condition of partial li•earity
necessary for Nothod (14) is not present.

SlOm
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Wht:. the symbols A x and Z y appear ii, items (6) through (11), they
signify the differences between successive values of the data, so that
.^, x = xk + 1 - xk and ,. y = Yk + I -vk" Tte use of the symbol A y in
Method (14) is explained in the table.

A comment is needed concer•iir.g Equation (141) in the table,

v = (a + bx) + 2 a2 cosh Cn(f - x)]

The final term, 8 - U - which can also be written in the form
2 cosh [ n(X - x)]

- - x) introduces a bump into the curve. The signifi-
en( - x) + en(x - K)

carce of the parameters f and % is explained in the table. The effect that
this term has when added to aquations for a straight line and for a parabola
is illustrated in Figures 3 and 4.

14

12

10 Y " "SX2 . 5x + 13.5 + 6

n u'
6,

4. 6 cosh Cni-'

4
2 6 2 cosh (4 (6- x)0

0 11

Figure 3. Graph of Variation of Equation (141).

S!!IM!! lI
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y a + bx + 6 1a[

y 1 + x ÷+ 6 u 6 . 5

CL

i2 cosh n(Z 4- /

5 2

02 4I 10

10 10

8 €- 1.5 8 CL -1.5

y 6" n 6 /

4y 4

2 
4 k 20

S• 6 100 
4 5 8 0x 

K
i 

Ftufe 4. Graph, of Iquauoo (14L).
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III. METHOD OF DIFFERENTIAL CORRECTION

A. iNTRODUCTION

Equatkons chat contain nonlinear parameters, and for which no trans-
formation will afford a linear relation among the parameters, canr.ot be
handled by the usual methods described in Section II. A genctal method thaL
will handle stch formulas is known as the method of differential correction.
rhis method is an iterative process for which initial estimates of ;tH para-
meters are required. By considering the approximate values of the constants
and the corrections to each of these values, the original function can be
expanded in a Taylor's series, which will be linear in the corrections when
terms of higher order than the first are ne lected. Either the method of
averages or the method of least squares will then yield the values of the
corrections. Addition of the corrections to the starting values will fur-
nish new estimates and the process may be repeated fcr improved accuracy.

Modern high-speed computers overcome the difficulties once pcsed by the
rather lengthy calculations necessitated by this method. Furthermi.,.C. the
method of least squares is usually selected for machine solution of the
corresponding regression equation because accuracy, rather than ease of com-
putation, is of primary concern. The method of differential correction is,
as a result, often referred to as the "general least-.'quares method for non-
tlneat parameters."

T-ts iterative procedure has the limitation that the original estimates
of the parameters must be close enough to the true values that higher order
rerms of the Taylor's series may be omitted withoul affecting the convergence
Of the procedure. Starting values may otten be ohtained from a knowledge
of the physical characteristics of the problem whose data are being analysed.
Certain graphical techniques analogous to those d.!qcribed in Section 11
will aloo be helpful for certain types of data. If an analog computer is
available, it can furnigh startinR values for a utde variety of functions,
by wtni'uigtng the area between a series of line sewants drawn through the
data points, and the curves obtained by varying the parameters tn the
equation selected for representation of the data.

Althoug." the method of differential correction is often reported in the
literature, it is not always described in a detailed and notationally simple
vanner. For the b ef i . 'L L the reader not familiar with this mnthod, the
jut~', t,as included a summry of the matertal presented in the references
,or ttratghtfnrward descriptions of the method, the reader mey refer to

inn in , Scarborough, end Nielson . Hore theoretical discussions are
given by Dvring and .uest" . Villiam'.: and Turner, Nonroe, and Lucas. a
asplov a w, difitcatiLn rf the p.ucedure. Specific applications of the
p-r ess art rpc-t•ed by Ho-eell" and Sarkeon end Cage".
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B. EXPIANATION OF THE METHOD

Consider a function

y - f (x; a, b, c), (1)

where x and y are the variables, and a, b, and c are the patameters. Let
ao, bo, Co be approximate values of a, b, c, and let A a, A b.. 6 c
represent corrections to these initial values such that

a - a0 + A

b - bo + A b (2)

c Co + AC.

A first approximation to the true function is

yo - f (x; ao, bo, co). (3)

Rewriting Equation (1) in terms of (2) yields

y- f (x; ao+ aa, bo+ Ab, co+ &c) (4)

Equation (4) may be expanded by Taylor's theorem for a function in several
variables to obtain

yu (f af

+ higher order ters in A a, 4 b, a C,

vhere a Sans evaluated at a a so, b a bo, and c a to.

Neslectin? the higher order term., substituting and trensppsing Yo,
Equation (to) beks

£t at at fF -o at a + at b + at 6

vhich Is linear in the cotrections A a, A b, A c.

Equation (6) corresponds to the multiple linear-regression equation

R a Z + £ Zl + AZ2 ZZ()

S ..... . . . . i i ii i!'(,)Ii i ' ii '[ ' i iii i
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whe re

R =y -yo

AZ,~ af
8ao

A -b 71 = a'•

abo

A2 z c Z2 o

".nts equation may be solved by the usual method of least squares to obtain
the values for L a, L b, and & c.

C. 4ODiFICATIC4 OF THE METHOD

M4any functions contain both linear and nonlinear parameters. Turnter
has reported a umodification of the general least-squares method that elimi-
nates the necessity of using any trial values for the linear parameters,
thus reducing the ^munt of work involved in the solution. In Turner's
method, the regression equation is taken from Equation (5) without trans-
posing yj. He has found that the linear parawters way then be computed
directly, thus eliminating the terms containing partial derivatives with
respect to the linear parameters. For example, if f (x; a, b, c) is a
functio.n in which a and b are nonlinear parameters and c is a linear Para-
Teter, the regression equation will te

(x; so, bo, c) *+ a+ - (a)

where a and are evaluated at so and be, but c remains vs-iablo. This
i S-0 i: d0 ba

vodification considerably simplites the general L.thod of least square*,
by requiring initial estimtes of only the nonlinrar parameters, aid by per-
-oitting the direct use of the observed y values, rather than requiring

a.al ulation of the residuals R U y - Yo.

9. UXAXPLES

Consider the problem of fitting the function

f (: a. b) a y a abV

to a :ct cf xsperimental data. Alth.2ugh this function contain* a nonlinear
parameter b, the equation does happen to be one of the types for which a



linear transformation is available. The regular least-squares procedure for
linear parameters, when applied to the linearized data, will supply directly
the best e.stimates of the parameters, and hence would usually be employed
for this iimple formula. It is interesting, hiowever, to consider the appli-
cation of the mettlod of differential correction to the estimation of the
parameters in this formula. A straight line my be fitted by eye to the
linear tran-.ormation of the data to obtain starting values ao and ho. By
the method of differential correction, we wish to obtain corrections A a.)
and L bo such that improved estimates will be

&I = so + A so

bl - bo + a bo

If al and bl still do not meet the requirements for accuracy, they may then
be used as estimates to obtain new values for the corrections, and hence
improved estimates

a2 al + al

b2 a bl + A bl.

The process may be repeated as many times as necessary to obtain the desired
precision. The two methods for obtaining the values of the corrections are
illustrated below.

Example 1: Pitting y = abx by the General Least-Squares Method for
Nonlinear Parameters

Given the function

f (a; a, b) a y abE, (a)

Its partial derivatives with respect to the parametera are

a f , b oxs o x b x - 1 .

Then the 11marised equation (IU'uation (6)] is

y yo *o boxA a + so x bo 4b, (10)

Ahere

yo "f (x; so, bo) - so box.

i,
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if 7e set

R y -Yo

A,) - L a Zo = bo x

AI - nA b Z1 a ao x box'l

th. regression equation becomes

R - Ao Zo + Al Zl

and may be solved for Ao and Al (i.e., the values of the corrections) by
the usual least-squares procedure.

Exampie 2: Fitting y - abX Ly the Simplified Metbod for Equations
Containing both Linear and Nonlinear Parnmeters

Again consider Equation (9). Using Turner's method, only the nci-

linear parameter b need be assigned a starting value bo. The linearized
equation (comparable to Equation (8)] takes the form

y - a box + a x box'l L b (11)

If we set

Bo a XO a box

BI a 4 b Xl a xbox-1

the regrespion equation becomes

y a Bo X0 +' Bi Xl.

SThis equation r•y be solved by the othod of least squares to obtaic Bo
and Bl1 The valu- fcr Bo yields the value of a, thich in turn, can be
Used with the value of BI to solve for A b.

E. SMEEDING THE CONVERCENCE

In mAry cases, convergence is slav due to the oscillations of the para-
meter estimates about the true value. It has been found that these oscil-
lations may be damped by adding only a fractional part of the corrections
to the parameter estimates when obtaining noe estimastes. Then parameter
ertaLmtes to be used in the next cycle of iteration will be of the form

& S•ao + O4 ao

bi a bo + 0 A bo

wbere 0 will usually, but not alvwys, be less than one.
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Wt- stein'5 specifically discudses the use of a multiplier to accelerate
,onvergence. Turner•, Howe1113, and Will's employ such a facttr in per-
forming the least-squares iterative procedure. Box" describes the
Princeton-IBM 704 program, which computes the optimum value f 0 before
obtaining the parameters of the function by noLalinear least squares.

F. PNSCUSSION

It may be noted that the method of d*fferential corrc.tion is a
generalization of the least-squares process we commonly use for equations
involving only linear parameters. This general method, therefore, may be
used for any function, whether it contains linear, nonlinear, or a combina-
tion of the two types of parameters. In particular, if the general least-
squares procedure is applied to an equation having only linear parameters,
and the initial estimates as, bo, 'o are each taken to be zaro, then the
corrections & a, A b, & c arrived at in the solution are simply the values
a, b, c of the parameters themselves, 'Lo that the general method reduces to
the special case we generally employ.'

Often the mathematical model for an experiment is written in terms of-
a differential equation. Such an eciuation sometimes canno. be integrated
explicitly, so that the partial dsriva tves of the functiion cannot be
obtained by direct differentiation. Box1" suggests that if smell changes
are made in each of the parameters in turn, the numerical value of the
derivatives may be calculated from the differences.

Unfortunately, there are times when even the use of the 0 multiplier
does not improve convergence satisfactorily. For additional consideration
of the convergence problem, the reader my refer to the paper by Box' 7 , who
has had considerable experience with the nonlinear least-squares process.
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IV. LIN7FAR COMBINATIONS OF EXPONENTIAIS

Experimental data are frequently friind to be well represented by sums
of exponentials of the general form

y a E Ai e'biX
i-1

As a result, a number of methods for estimation of the parameters of such
a function have been investigated and reported in the literature. Some of
there methods will be mentioned briefly here. for the details, direct
reference should be made to the literature.

Feurzeig and Tyler's have illustrated clearly the graphical "peeling
off" procedure explained in item (14) of Table I. They have extended the
method to the case of an equation containing more than. two terms, but the
parameter estimates obtained are only approxiamte. A method developed by
Prosy and discussed by Whittaker and Robinson1', Cornell' 0 , and Co-rf'eld
et e1 , can smetimes be used to advantage in obtaining initial estimates
for later refinement by one of the iterative procedures. Iterative maximum
likelihood techniques, one of which is similar to the iterative least-
squares procedure, are briefly reviewed by Cornell 0*.

Taylor'4 used difference equations in his method of attacking the
problem. The parameter estimates obtained by his process, however, have
not been found to be as consistently accurate as those calculated by some
of the other methods.

, Cornell 0 has developed an effective noniterative procedure for fitting
a fairly general class of linear combinations of exponentlals to data taken
at equally spaced iatervals. He derives expressitos that employ as many
sums of the observations as there are parameters 'o be estimated. His
method has two advantages over the Prony method; it does not place a limit
on the number of observations, and it does not reo.uire least-equares
calculations.

Hartley's "Internal Least Squares'~a is a fairly well-known method that
can be applied to function& having linear differential equations, end hence
to linear combinations of exponentiale, hecruse they are generated by
linear differential equations. The linear difference equation corresponding
to the dtfferetatial kquation is integrated nherically. In the resulting
regression equatfon "the dependent variate y is retated to its own repeated
sums as independent variables."'* The principle of least squares is then
applied to this regression equation.
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V. ASYPOTIt.. REGa~SSIOt4

A. INTRODUCTION

Curves that asymptotically approach 
a limit are often appropriate for

representation of experimaental data. 
The modified exponenltial eq"*atiofl

y a m + i px has been used widely to express such relationship. This

formula lis a particularly useful one, because simple transformationls will

reduce several other equations to the same general form, The logistic,

Gompertz, and Mitscherlich equations are common variations, and sch study

has been devoted to each of these individual curves, as well as to the

general modified exponential. Graphs of various forms of the modified

exponential are provided in Figures 5, 6, and 7. A comparison of the pro-

perties of the various form of the equation has been made by Croxtotu and

Cowden" . They note that, when Lhi x values of the function are equally

spaced, the first differences of y change by a constant percentage in the

modified exponential, whereas the first differences for the logistic resemble

a normal curve, and for Gomperts's law resemble a skewed frequency curvo.

B. ESTTIVTIOi O T13 PARA)3IMS

The methods available for estimation of the parameters in an asymptotic

regression are numerous. In addition to the general methods for exponentials

discussed in Section IV, other mathods suitable for functions of the specific

form y a % + opx have been reported. Cowds.P has treated a method of

selected poialts and a graphical method. ..elder'" approach is based on

internal least squares. Steven-- has developed an iterative method and

provided tables to facilitate its application. Patters a*-" presents

forsulas for obtaining a fairly accuate es timate of pi that my be used

subsequently as a starting value for Stevens' methad er to obtain approxi-

mate values of . and 0 from the linear regression of onpx.

The form y A A [( 1 0Oc(x~b)) of the modified exponential is known as

Mitscherlich'a low. limentel.Cmeua• has applied this form of the equation

to a series of experiments on fertilisers. Hie method of parametter estima-

tion has been uead widely and found very acceptable. Ain extension of

Gcoes' and Stevens' table&, has been provided by Byrd, Jones, It l.as

C. GmMKTZ CURVq

The G. ertL curte, y a kabm, can be dealt with by the method already

explained if the equation to transformed by logaritea to the form

lot y a log k + (log a) bx. specific formulas are alpo available for direct

estimation of the parameters from the ri l inal form of the Gaerft equation.

Kenney?, D-vis, and Croton and Cowde'' have treated the Coprts crve

in particular, and they have presented appropriate formalas for its solution.
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D. LOGISTIC CURVE

One of the most widely used asymptotic c'rves is the logistic, whose
equation is

kY " +e-•b

Taking reciprocals will transform the logistic to

!= 1+ i1 a (eb)x
Y k

which is, again, a modified exponential. Such a transformation is rarely
performed, however, because the ..- 0thods of dealing with the logistic itself
are so numerous.

One of the simplest and best known ways of obtaining parameter estimates
is the transformation of the e4uation into the form

In k.h a + bx
7

which is a straight line on semi-logarithmic graph paper when x is plotted
against (k-y)/y. Pearl and Read and berkeon have illustrated this
method of fitting, and have also given good discussions of the general
properties of the logistic function.

Borkson *'-8 has provided graph paper scaled in such a way that the
linear relation my be obtained by plotting x directly spinet y/k.
Berksoas "lOlit japer" is similar to an earlier logitic grid reported by
Wilson". Hodge@ a explains a "transfer method which can be used io improve
the estimates obtained from the linear plot on ]ogit paper." berksonu P40
has also provided tabled for the logit and antilogit, to facilitate the
determination of the muima likelihood estimate of the logistic function.

,everel other linear transfosmtioas of the logistic have been developed.
meaI gives a very good s-imary of five transformations that are based on
the diffaentLal equation of the logistic or on some form of the corresponding
difference equation.
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A generalization of the logistic sometimes prvides a better fit for
a set of experiments' data. Terms may be added to the exponential to alter
the shape of the curve appreiriately. The general logistic is given in the
form

kY + •a+bx+cx+...

where the number of terms in the exponeut is detezained by the .ype of fit
desired.. Figure 7 illustrates the difference between a simple logistic
curve and a more general logistic, whore exponential is quadratic. Bailey
has published some tables for use in fitting the generalized logistic.

There are many other equatihnb that can be used to represent symmetrical
growth curves besides that of the logistic function. Questions often 3rir.e
as to which equation would bc anst appropriate for a certain set of data.
An interesting article by Winsors3 coupares the logisýic with the integrated
normal curve, the arc-tangent curve, and the integrated Pearson Type VI)
curve.
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VI. POLYNOMIALS

The use of polynomials in curve fittic& :s extremely comon and easily
4chieved. The method of least squares yields parameter estimates immediately,
because all parimeters in the polynomial equation are linear. When the x
values of the data are equally spaced, the successive differences if the
y values may be examined as an aid in determining the appropriate number
of terms for a polynomial that will represent the data adequately3 . Under
this condition, if the nth differences of the y'e are constant, then the
last term in the required polynomial will be xn. It is advantageous to use
orthogonal polynomial equations when the degree of the polynomial needed to
fit the data satisfactorily is not known. Orthogonal polynomials enable
higher degree terms to be added to the equation without changing the coeffi-
cients of the previously fitted polynomial. Most textbooks describe the
technique of using orthogonal polynomials in curve fittin;. Paradine and
Rivett4, in particular, give a good exposition of the subject.

Because of the general familiarity with the wathods of polynomial ret•rs-
sion, polynomials are often overused for curve fitting. In spite of the
fact that a polynomial can be found to fit any set of data if a sufficient
number of term &re taken, there is often very little biological or physical
significance for the parameters of the resulting polynomial. Considerable
thought should be 8ivec, therefore, to the physical basis of the problem,
in order to determine ,*oether there is any merit in using a polynomial to
represent it. Smtimes, of course, it is helpful to use a polynomial as
an approximation to another function for which the direct estimation of the
parameters would have been difficult or impossible.

9
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VI7. FREQUENCY DISTRIBUTIONS

The general tcpic of frequency distributions is well known to statis-
ticians and fully covered in statistiCal textbooks. It seems unnecessary,
t""erefore, to include in this paper any lengthy discussion of the subject.

An important class of frequency functions arising from the solutions
of a certain first-order differential equation is the Pearsonian system of
curves. A comprehensive treatment of this family of curves is given by
Eldertonu . Other good references on the subject, in addition to the
writings of Karl Pearson himself, are the discussions given by Peters and
Van Voorhis . Kenney and Keeping , Carver', Craig", and Kendall°,

The familiar normal curve is one of the types of curves included in
the Pearsonian system. For a dtscussion of the use of "probability paper'
to effect a linear transformation of the integrated normal curve, reference
may be made to Finney's Probit Analysise1 .

Methods of parameter estimation commonly used for frequency distri-
butions are the method of moments, the principle of maxima likelihood,
and the minimum chi-squared process. These procedures are presented in
standard textbooks and in the references given for the Pearsonian curves.
It should be noted that the use of these methods is not restricted to the
fitting of frequency distributions. An application of the method of
wjximum likelihood to curve fitting in general as reviewed by Cornell' 0 ,
and O'Tooleas applies the method of moments to a fairly general class of
functions.
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VIII. SUMMARY

This paper is offered as a guide for t'. -ie persons who seek to represent
experimental data by some appropriate mathematical expression. For straight-
line transformations and the general method of differential correction, it
should be possible to work directly from this paper. For the othcr methods
tr~ated in less detail, the discussion should secve to indicate the literature
a%.ilable on the particular topic of interest to the experimenter.

It is empasized that this paper deals with only the various types of
curves and the mathematical techniques for fitting them to experimental
data. An experimetiter needs such general information as a background for
the mathematical interpretation of his problem. Another extremely important
consideration, however, is the biological or physical significance of the
data being analyzed. No mathematical expression can bc c-.nsidered adequate
for representing experimental data unless it has evolved "rom the physical
basis of the problem. Such scientific analysis of the problem should be
conducted before the techniques of curve fitting are applied.

i0

SI I III il l I I~ l
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